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For any continuous function f:[ —1,1]+ C and any pe (0, ), let ||f],:=
(2’1S1,1 |f(x)|? dx)?; in addition, let | f],:=max_;<.<; |f(x)]. It is known
that if f'is a polynomial of degree n, then for all p >0,

1o < Cpr®? | £,

where C, is a constant depending on p but not on n. In this result of Nikolskii
(1951), which was independently obtained by Szegdé and Zygmund (1954), the
order of magnitude of the bound is the best possible. We obtain a sharp version of
this inequality for polynomials not vanishing in the open unit disk. As an applica-
tion we prove the following result. If f is a real polynomial of degree n such that
f(—=1)=f(1)=0 and f(z) #0 in the open unit disk, then for p >0 the quantity
[/ l/lfll, is maximized by polynomials of the form ¢(1 +x)" "1 (1 —x),
c(1+x)(1—x)"~', where ceR\{0}. This extends an inequality of Erdds (1940).
© 1999 Academic Press

1. INTRODUCTION AND STATEMENT OF RESULTS
For any continuous function f: [ —1, 1]+ C and any p (0, o) let

1 1/p
171, :=<;jl If(X)I”dX> :
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in addition, let

1flle = max |£(x)].

sSXs

It is known (see [7, Sect. 6.8]) that | /|, tends to the limit

1
exp (4 tog 1700 i

as p — 0. This is exactly the value given to the functional |/, when p =0.
It was proved by Erdés and Griinwald [ 5, Theorem II1] that if £ is a
polynomial having only real zeros and —1, 1 as consecutive zeros, then
1£1:<(2/3) | fllo. Considering the polynomial 1 —x? we see that the
inequality is sharp. Mentioning (1 —x?)" as an example they remarked
[5, p. 358] that the same ratio may assume values less than any preassigned
number howsoever small. We may still ask for the precise lower bound for
I£11/1f 1l if the degree of f does not exceed a fixed integer n. It turns out
that this ratio is minimized by polynomials of the form ¢(1+ x)(1 —x)" !
and ¢(1+x)""'(1—x), where ¢#0. In fact, we shall consider the ratio
I£1,/Ilf]l o for an arbitrary p = 0.
Let &, be the class of all polynomials of degree at most n. We say that
fez, if
) feZ,
(11) flz );éO for |z] < 1;
(ii) f(x)>0for —1<x<1.

Given u € {0, ..., [n/2]}, the set of all polynomials in %, which have zeros
of multlphclty at least 4 at —1 and 1 will be denoted by Z, ,. Note that
2, o is the same as Z,.

For neN, pe{0, .., [n/2]} and pe[0, ), let

My, . p =i S, fE€P s [ ]l = 1} (1)

Furthermore for k € {0, ..., n}, let

nnqn, k(x)

7 n—ky

Gn (X)) 1= (1) (1 =2)""5 g, 4 u(x) 1=

Note that |, s .l =1
We prove

THEOREM 1. Let f be a polynomial of degree at most n with real coef-
ficients and having no zeros in the open unit disk. Suppose, in addition, that
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f has zeros of multiplicity at least yu at —1 and 1, where 0 <u<[n/2]. If f
is not a constant multiple of q,, , or of q, ,_,, then

1> Ndn 5 [ fle (0 p<o0).

The analogue of the inequality of Nikolskii, and Szegdé and Zygmund,
for polynomials not vanishing in |z| <1, is contained in the following
simple consequence of Theorem 1.

COROLLARY 1. Let f be a polynomial of degree at most n having no zeros
in the open unit disk but whose coefficients may be nonreal. Suppose, in
addition, that f(z) = (1 —z>)* g(z), where 0 <u <[n/2] and g is a polyno-
mial of degree at most n—2u. Then for 0 <p < oo, we have

LA 11,

1, 1, o M1

S <

>

where equality holds only for constant multiples of q,, ,, . and ¢, ,_, ..
Inequality (4) can also be written as
ﬂ”(n—ﬂ)”‘”< I'(pn+2)
" I(pp+1) I'((n—p
win—p)" "

p e" || f1l, p=0,

1/p
1Sl  O<p<oo
)p+1)> ’
[/ <

where u is as in Corollary 1.
Here is another consequence of Theorem 1.

COROLLARY 2. Let f be a real polynomial of degree at most n, such that
f(=1)=f(1)=0 and f(z)#0 for |z| < 1. If f is not a constant multiple of
qn,l or Of qn,n—lv then

) I, 1 1l o0
1/ 1o < Hq’ll H /1,  (0<p<oo)
n, p

This corollary is an extension of a result of Erdés [5, p. 310].

2. PROOF OF THEOREM 1

For the proof of Theorem 1, we shall assume that f(x) >0 for —1 <x
<1 and |f|,=1. We shall show that for each pue{0,.. [n/2]} and

0< p<oo, the infimum I, , , defined in (1) is attained only when f is
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Gn, s+ OF Gy »_, .- The proof of Theorem 1 is rather long, and so we shall
present it as a sequence of lemmas and connecting paragraphs.

2.1. Preparatory Lemmas

Lemma 1. Given n, u, and p as above, there exists a polynomial F belong-
ing to %, , with ||F||, =1 such that |F|,=MN

n,u,p*

Proof. 1f f(z):=3_,a,z" belongs to %, , and | f|., =1, then
|av|<<n> for 0<v<n
vV

Indeed, f(z) can be expressed as a,[[7_,(1—{,z), where |{,|<1 for

1<v<nand so
la,| <o <”> — £(0) (”) < (")
A V v

Note in addition that

1e.,

For each positive integer m there exists a polynomial

h(2) =Y a, 2"
v=0

belonging to 2, , with |4,,|l,, =1 such that

-1
12l , <M, . ,+m~ .

Since |a,, | < (%) for all meN and 0<v<mn, we can use a standard
argument to select a subsequence {/,, .., /t,,, ..} of {h,} converging
uniformly on any compact subset of C to a polynomial F in %,. Since
h,,(0) = 27" for each m we note that F cannot be identically zero. Hence, by
a well-known theorem of Hurwitz [ 1, p. 176], F cannot have any zeros in
|z| <1 although it must have zeros of multiplicity at least 4 at —1 and 1.
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Hence, the limiting polynomial F belongs to %, ,. As regards the sub-
sequence /1, , ., My, ., We could have assumed (by choosing a further
subsequence if necessary) that if ¢, is the point of [ —1, 1] where 4, takes
the value 1, then &4, ..., &, ... tends to a point &*. Using the mean value
theorem and a well-known inequality of A. Markov, according to which
4] <n? |h|l, for every polynomial i of degree at most n, we conclude
that F(&*)=1. Thus, ||F|, is equal to 1 since, obviously, it cannot be
larger than 1.

LemMA 2. If Fe?, , and ||F|, =M
real.

nu, p» then the zeros of F must be all

Proof. Let us suppose that
F(z):=G(z)(z—a—ib)(z—a+ib),

where a,beR, b#0, a>+b>>1. Let & be a point in [ —1,1] where F
assumes the value 1 and consider the polynomial

F(g z) 1= F(z) —eG(z)(z — &)?

=G(2){(1—&) 22— 2(a—&&) z+ d® + b2 — &2},

For small positive ¢ the zeros of the quadratic (1 —¢) z? —2(a —&&) z + a®
+ b% —g£? are complex and the product of their moduli is (a® 4+ b% —&&?)/
(1 —¢), which is greater than or equal to 1. For such values of ¢, the poly-
nomial F(e;-) belongs to 2, , and |[F(e; )|, =F(e; &) =1. However,
| F(e; )|, < FIl,, which is a contradiction.

Remark 1. In Lemma 2 we have shown that the polynomial F cannot
have non-real zeros. So, while looking for a polynomial in %, , for which

9N, , ,1s attained, we only need to examine those whose zeros are all real.

We shall say that fe g, , if

* fED s
o the zeros of f are all real;
o Ifle=1

According to Lemma 2,

M, =S, f€@n .} (6)



MEAN VALUES OF POLYNOMIALS 97

It is a simple consequence of Rolle’s theorem that a polynomial with
only real zeros has only one critical point between two consecutive zeros.
So, each polynomial fe ¢, , attains the value 1 at exactly one point in
[ —1, 1], which we shall a/ways denote by ¢&.

Lemma 3. Let fep, ,. If & belongs to [ —1,1] and

S = max f(x),

—1<x<1

then || <1 —2u/n.

Proof. There is nothing to prove when u=0; so, let u>1. Due to
obvious symmetry, it is enough to prove that &¢(1—2u/n, 1). Clearly,
f'(&) must be zero. If f(x) :=c(x —1)* 1224 (x — x,), then f'(£) can vanish
only if

does. But 1/(&—x,)<1/(1+¢&) for 1 <v<n—pu. Hence

n—p  p n—=2u—ng . 2u
A(é)sHé—l_é_ e <0 if §e<1—n,1>.

Lemma 4. Let Fe g, , and |F|,=M Then

nu,p*

F(x):=c(l1 —=x) (14+x)* (1 +ax) (>0, j+k=n—1, —1<a<]l).

In addition, j=u or j=u—1 according to whether o e(—1,1] or a=—1
and k=u or k=u—1 according to whether o[ —1,1) or a=1.

Proof. Let & be the point of [ —1, 1] where F attains the value 1. First
we observe that F cannot have zeros in (—oo, —1) and (1, co) at the same
time. Suppose it does. Let A, be the smallest zero of F and /,, the largest.
It is easily seen that for all small ¢ >0 the polynomial

Fo(x):=F(x)+e——————(x=¢)?

belongs to ¢, , and F, ;(x) < F(x) for all xe[ —1, 1], the inequality being
strict in (—1, 1)\{&}. So F may have zeros in (—oo, —1) or in (1, o0) but
not in both.
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Assume that F has no zeros in (— oo, —1). We claim that F cannot have
two or more distinct zeros in (1, c0). Suppose it does. Let 4,, be the largest
zero and 4, the largest but one. It is geometrically evident that for all small
&> 0, the polynomial

F(x)

k = A1)

e 2(X) :=F(x)—¢ (x—=¢)
belongs to @, , and F, 5(x) < F(x) for all xe[ —1, 1], the inequality being
strict in (—1, 1)\{¢}. So F can have at most one distinct zero in
(—oo, =1)u(l, o0).

Suppose that F has a zero 4,, in (1, c0). We claim that 4,, cannot be a
multiple zero. Suppose it is. Then for all small &> 0, the polynomial

Fi
Fs) = FUx) =6 0 (x =)

=(XF()/;,),,)2 {(1—¢)x*=2(4,,— &) x + A2, — &&?}
belongs to ¢,, ,. Indeed, F, 5(¢) = F(&) =1 and there exists ¢* >0 such that
for all ¢e (0, e*) the quadratic (1 —¢) x> —2(4,, — &) x + 42, — &? has two
different real zeros, both lying in (1, co0). In addition, F, ;(x) < F(x) for all
xe(—1, D\{&}. So, if F has a zero in (—oo, —1)u (1, ), it should be
simple.
We have proved that F must be of the form

F(x):=c(1 —x)7 (1 +x)¥ (1 +ax)

with ¢>0, j+k<n—1 and —1<a<1. In addition, j=u or j=zu—1
according to whether a e (—1,1] or a= —1 and k> u or k> u — 1 accord-
ing as ae[ —1,1) or a=1. We claim that the sum of the multiplicities of
the zeros of F at —1 and 1 cannot be less than n— 1. Suppose it is. First
let ae(—1,0)u (0, 1). The polynomial

F(x)

F, Jx):=F(x)—e¢ (+ax)

(x—¢)?

belongs to ¢, , for all small &¢>0. Furthermore, F, 4(x)<F(x) for all
xe(—=1, D\{¢}. Ifae {—1,0, 1} then we have to prove that F(x) cannot
be of the form ¢(1 — x)7 (1 4 x)* with j + k <n — 2. For this we consider the
polynomial

F, s(x) 1= F(x) —eF(x)(x — &),

which is of degree at most n, and obtain a contradiction.
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We say that a polynomial f belongs to =, ,, if

e it is of the form
f(x):i=c(14+x)(1—x)""%"1(1 +ax),

where 0<k<n—1, —1<a<l, ¢>0;
e it has zeros of multiplicity at least u at —1 and +1;

¢ flo=1

Lemma 4 in conjunction with Lemma 2 says that while looking for a
polynomial in %, , for which 9, , , is attained, we may restrict our search
to those which belong to =, ,. In other words,

M, p =100 1,0 fEm, .} (7)

Given neN, pe{0,..,[n/2]} and e[ —142u/n, 1 —2u/n], we say
that fen, , . if fen, ,and f(&)=1. Let

. 2u 2u
gﬁ",ﬂ,P,f:zlnf{HfHP:fETCn,,u,f}s —1+7<6<1—7. (8)
Then, clearly
) — 1 f = ] f 9 .
Jﬁn’”’p ] $111’172y/n ‘:m"’”’p"’z osééquy/n mn’”’p’é ©)

For 0<k<n—1, let

2k 2k +2
él,n,k::_l-"_?a éZ,n,k::_l-i_

(10)
n

and 7, . :=[&, , x» &2 0 1] The following lemma helps us to identify the

elements of 7, , ..

LemMA 5. Letnz=3 and 1<k <n—2. For each & in I, ; there exists one
and only one o =o(&) in [ —1, 1] such that the derivative of

P, o x) :=(14+x)*(1—x)""17% (1 +ax)

vanishes at . Moreover, a(&) increases strictly from —1 to 1 as & increases
Jrom one end of the interval [&, , 1, &y, 4] to the other.
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Proof. The derivative of P, ;(«; -) with respect to x vanishes at ¢ if and
only if

B ._(n—l)é‘i‘(n_zk_l)
e O §

We show that |«(&)| <1 if {el, ;. Setting

gu(&):=n&+(n—2k—-1)&~1

we see that
2k 2k
g.(—1)=2k>0, g,,<—1+>=—<0,
n
2k +2 2
g,,(—l—i— i >:—(n—k—1)<0, g (1)=2(n—k—1)>0.
n

Hence g, has a zero in (—1, —142k/n) and also in (—1+ (2k+2)/n, 1).
Consequently, it cannot have any zero in [, ,. This implies that «(¢) is a
well-defined real number for all ¢ in 7, ;. Elementary calculations show
that a(&) <1 for e, , if and only if (1 4+&)(E+1—(2k +2)/n) <0, which
is certainly true for all ¢ in 1, ;. In addition, —1 <«(&) for e, , if and
only if (1—-&)(E+1—2k/n)>0 and so for all {el,,. Thus, we have
proved that —1 <a(&) <1 for all &€, ;.

As can be easily verified, a(¢; , )= —1 and «(¢, , x)=1. We have to
show that that «(&) increases strictly from —1 to +1 as & increases from
one end of the interval 7, , to the other. For all e/, , we have

(nE+n—2k—1)>+n—1—né&?
{1—(n—2k—1)&—n&*}?

«(¢) = (11)

Hence o'(¢)>0 if n—1—né*>0, which certainly holds if |&]<1—1/n.
Since 1, , <[ —1+41/n, 1 —1/n] it follows that «'({) >0 for all £e 1, ;.
Remark 2. In Lemma5, we have proved that for each ¢ in 1,4,

1 <k <n—2 there exists one and only one a e[ —1, 1] such that

oy Puslos )| =0,
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which is a necessary condition for the maximum of cP, ,(«;-) to be
attained at ¢. It follows that for any given & in [, ,, 1 <k<n—2 the set
T, k e contains just one element, namely the polynomial

L
Pn, k((x; é)

=1+ (n—2k—1)
U = — k1) —ne®

Pn,k,é(x) = Pn,k((x; x)a

(12)

As k varies from u to n—pu—1 the intervals I, , cover the interval
[ —1+42u/n, 1 —2u/n]. Using the obvious symmetry we conclude that for
each & in [ —1+2u/n, 1 —2u/n], 1<u<[n/2] the set n, ,  has one and
only one element. The same can be said for & in (—1, —1+2/m)u(1—2/n, 1)
when p=0. In fact, simple calculations show that for any £in (—1, —1+2/n)
the set 7, o . contains the polynomial

I—x\""'néf—1—(n—1
Pn,O,é(x) = <1 _z> ne é_(rll )x’

2
—l<é<—1+4- (13)
n

and no other; for ¢ in (1 —2/n, 1) the only element of 7, , ¢ is the polynomial

1+x\""'né+1—(n—1)x
Pn,nl,é(x)::<1+é> f‘i‘l )
2
1—;<é<1. (14)

It may be added that for —1 <& < —1+2/n we have

(1—x)"" " (1 +a(&)x)
(1=8"""(1+a($)¢)

Pn, 0, 5()6) =

where a(&):= —(n—1)/(né —1) increases from (n—1)/(n+1) to 1 as &
increases from —1 to —1+2/n. For 1 —2/n <& <1 we have

(1 + )" (1 + (&) x)
S+ (4 w()E)

Pn,n—l,f(x)

where (&) := —(n—1)/(n + 1) increases from —1to —(n—1)/(n+1) as
¢ increases from 1 —2/n to 1.
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Remark 3. For each e[ —1,1] there is only one ke {0,..,n—1}
such that e/, ; except when £ is of the form —1 + 2k/n. In the latter case
¢ belongs to I, , for two consecutive values of k; however, there is no
ambiguity in the definition of P, , . because P, , . for ¢=¢&, , , and
P,y efor =&, 14 are the same.

DeFINITION.  Given neN, pe{0,..,[n/2]}, pe[0,0) and ¢ in
[ —1+42u/n, 1 —2u/n] let us denote by &, ,, - the set of all polynomials f'in
T, ., ¢ Such that || f, =M

np, p, &t

Remark 4. 1Tt follows from above that for | <u<[n/2] and any ¢ in
[ —1+42u/n, 1 —2u/n] the set &, , . consists of only one element, namely
P, e with ke{pu, ..,n—u—1} such that &€, ;. The same is true of
6.0, ¢» €Xcept possibly for &= +1.

What can we say about , , , and 7, , _,? For this we note that a poly-
nomial of the form

f(x) i=c(14+x)% (1 —x)" 7175 (1 4 ax), —I<a<l, f(1)=1,

assumes its maximum on [ —1, 1] at 1 if and only if

14+x\*" 7' +ax n—1
2 I4+a’ n+1

F06) = f(x) = (

It is easily checked that if « <a' than 0 < £ (x) < f,(x) for all xe(—1,1).
Hence | f, ||, is a strictly decreasing function of ain [ —(n—1)/(n+1), 1].
This implies that &, o ; consists of just one polynomial, namely

14+ x\"
P:,n—l,l(x)::<> . (15)
2
Similarly, &, o, _; has only one element, namely the polynomial
I—x\"
Pko _1(x):= 5 . (16)

Remark 5. We conclude that for all pe[0, c0) the value of M, , , - is
determined as follows.

(1) First let £e[ —1+42/n,1—2/n]. Then, as is easily seen, f can
belong to 7, , only if e {1, .., [n/2]}. Furthermore, €1, , <[ —1 4 2u/n,
1 —2u/n], for some ke {1,..,n—2} and

mtn,ﬂ,p,fz”Pn,k,pra (17)

where P, , . is as in (12);
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(i) ifée(—=1, —=14+2/m)u(l—2/n, 1), then
s‘Inn,O,p,:fzHPn,O,CHp or g‘Rn,O,p,ézHl)n,nfl,éup’ (18)

according to whether ¢ lies in (—1, —1+42/n) or in (1—2/n, 1), respec-
tively;
(i11) finally for £ = +1 we have

iUEn,O,p,lz”P;l:,n—l,l”pa iar,O,;;,—l:HPVT,O,—al) (19)
where P}, and P}, _, are as in (15) and (16), respectively.

2.2. The Case p>0 and u =1 of Theorem 1

First we will find 9t for p>0 and x> 1. Let us set

n, 1, p

(1 =)/ (1+x) (1 +o(&)x)]?
(1= (1+ O (1 +a(&)¢)

where ke {u,..,n—1—pu}, j=n—1—k, p>0. Then from statement (i) of
Remark 5 we have

M, e p= (3D (EN? (Eel, e [—1+2u/n,1=2u/n]).

In order to determine

1
0= dx,

LU p=1

we shall study, in view of (9), the behaviour of @,(¢) over the subintervals
L= Conk]  (k=fhwan—p—1) of [—1+2u/n 1—2u/n].
Because of obvious symmetry we may assume k> (=n—1—k). We
remind the reader that «(¢, , )= —1, a(, . ) =1 and that there is one
and only one point

k—j 2k—(n—1)

*=Ex = = 20
< mET itk n—1 (20)
in I, ; such that a(&*)=0.
We shall end up with the conclusion
min ¢p(é) = min{ép(él, n,k)7 djp(éZ, n,k)}‘ (2’1)

Lk SES<& ik

The function @,, whose definition depends on 7 as well as on k is differen-
tiable at each interior point of 7, ,. At &, , . the right-hand derivative
exists and at £, ,, ; the left-hand derivative exists. So, @,(&;) is to be under-
stood as @,(&;+) and D,(&,) as D,(E, —). As we shall see, @, has at
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most two critical points in 1, , = [ . x, &2, . x] but only one point of local
extremum. It lies in (&g , %, &5 %) and is a point of local maximum.
A straightforward calculation gives

D,(&) {fl l—x”’ 1+x)k"(l+oc(é)x)"_1xdx
D) | P (1+x)% (1 +a(&)x)? dx
&
BEEE é} | 2

It is important to know the sign of @,(¢{) at the points

k—j—1 w Kk—1J B _k—j+1
é éZ_fz,n,k_jJ’_k_i_l'

flzfl,n,k:m, RS

For this we need the following well-known formula.
LEmMMA 6 [4, pp.212-214]. If R(a)>0 and R(b) >0, then

jl (l_t)a_l(1+t)b_ldt=za+b_lw (23)

_ I'la+b)’

The quantity @,()/P,(S) can be explicitly calculated at the points
&1, E% &, since a(&q)=—1, a(é*)=0, a(E,)=1. Writing x in the form
—(1—x)+1 we obtain

Plert)_ e, {K‘ Pre T (14 xdy & }
o, &) 7 §_1<1 x)w+ff<1+x)kpdx T—¢

(1—)”’+”_1(1+X)k”dx ¢
)PP (T4 dxy  1-¢,

— e -1+ jl

- Gtk pl &
“’“(51“{ T U, 1o

} by Lemma 6

where we have used the fact that &, =(k—j—1)/(j+k+1). As noted in
the proof of Lemma 5, «'(£)>0 for all ¢ in [ —1+2/n, 1 —2/r]; hence
@,(¢; +)>0. Obviously then there exists J; >0 such that

?,(8)>0  for & <E<&+0,. (24)

P
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Since a(E*) =0 we get

DU _ pa(e®)
¢p

ILLA=x)P(1+x)*xdx
fL (1=x)7 (14 x)* dx —<
1

{ l—x)fp(l+x)k”+1dx f*}

L (1=x)7 (1 + x)* dx

Jp ]}
]p+kp+2 ]+k

2(k —j)
(jp+kp+2)(j+k)

= —pa(&¥)
wherein we have used (23) and the fact that &* = (k— j)/(j+ k). Hence,
D (E*) <0 if j<k, D (E*)=0 if j=k. (25)
Similarly, using the fact that a(&,) =1, we obtain

Dy(lo—)_ *(E—)
D,(<>) 2k +1)

There exists therefore a positive number J, such that

D,(£)<0 for &,—0,<E<é,. (26)

Since @, is an increasing function of £ in [£;, ; +J,) and a decreasing
function of ¢ in (£, —0,, &,], it must have at least one critical point in
(&1, &,). Let {c}, « be the set of all its critical points in (&, &,). Our argu-
ment will show that {c}, , contains at most two points and that only one
of them is a point of local extremum. The point of local extremum is, in
fact, a point of local maximum; so (21) holds. The details follow.

It is convenient to introduce the notation

&)= =) (14207 (1 +2(8)x)" " xxdi,

Do(&) :=j11<1 — 07 (14 2% (1 +a(&)x)7 =" x 1 dx,

and

D(&) :=j11 (1—x)7 (14 x)% (1 +a(&)x)? dx.
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Then
o) LD ¢
a6 1) {56 @
So
D) ¢

DE) THa@E | CEtCnr @)

Taking (27) into account it is easily seen that if &€ {c}, ., then

D,(8) _Py(S) {‘P’p(i)}z

0,0 0,8 18,0)
. D’l(é)_Dl(é)D’(é)_l—a’(é)éz}
"’“(é){mz) DE? (xweer
Clearly, D(&) — Do(&) =a(&) Dy(&); hence if &€ {c},, «, then
Dy&) D) —a) D) &
G T G T G

Now the case p=1 has to be treated separately from the much harder
case p # 1.

LemMmA 7. (21) holds for p=1.
Proof. Using Lemma 6 we obtain

jl (1—x) (1 +x)kxdx=fl (1—x)7 {(1 +x)*1 = (1 +x)*} dx
1

- -1

Ir'G+)Irk+1) k—j
I(j+k+2) j+k+2

:2j+k+1

and

Jl (1=x)7(1+x)° (1 +a(&)x) dx
1

:2j+k+1f(j+1)F(k+l){l (k—j)oc(f)}
I'(j+k+1) J+k+2 )
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Hence by (22),
a<é):a,(é){ k= ¢ }
D,(&) Jtk+24+(k=j)a(l) T+a()E

(k=) —(U+k+2)¢
(JHk+24k—j) )1 +a(&)E)

S

=a'(<)

which shows that @, has one and only one critical point &:=(k — )/
(j+k+2)in (&, ,). In view of (24) and (26) it must be a point of local
maximum. Thus, (21) holds.

In order to prove (21) when p # 1 we need the following representation
for D'(&).

Lemma 8. If Ee(&y, &,), E#EX, then for pe (0, 00)\{1} we have

Di(&)=(p—1) o(H{A4:(E) + A45() +45(E)},

where

and

A5(¢) = {(k—J) pDo($)

(p—1 (&1 —(&)(1 +a(£))
—((j+k) p+2) Di(S)}.

Proof. Note that 0 < |a(&)| <1 since & e (&, &,)\{&*}. Using Lagrange
interpolation in the points —1, +1 and — 1/ = —1/a(&) where & # &*, we
can write

x2=2(11_a) (1 —x)(1 +ax)

1
g )

T(—a) +a)(1_x2)‘
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Clearly, this formula also holds for & =¢&*, ie., when a(&) =0. Hence
1
Di(&)=(p—1)(&) Ll (1=x)7 (14+x)? (1 + (&) x)? > x* dx
=(p—1) (O A:() + 45(&) + 45(8)},

where

1 1 )
AN =5 [ (=07 (140 (L@~ (1) d
1
Zm(Do(f)—Dl(f)),
1 )
S (=0 (0 () 07! (14 d

1
T2(1+2(¢))

A5(&) =

(Do(&) + Dy(£)),
and

1

A5(8) = T(p—Da(l—a)(1+a)

1
xj (1= )2+ (14 x)/2+ 1 (p—1) a(1 +ax)? 2 dx
1

1 1 '
(p—1a(l—a)(1+a) J_l (1=x)7 (1+x) (1 4 o0x)? !

x{—=(p+1D)(1+x)+(kp+1)(1 —x)} dx

1
(p—1)a(l —o)(1 +a) {(k—J) pDo(&) = ((j+ k) p+2) Di(&)};

i.e., Lemma 8 holds.

If £e{c}, «, then we may use (27) along with (29) to conclude that if
pe (0, 0)\{1}, then

A1) _ 1 Do(S) = Di(<) _ 1 1-¢
D) 2(1—-aQ) D) 2(1—o(&)) 1+ a(&)¢
A5(S) _ 1 Dy(&) + Dy(€) 1 1+<

D) 21+a&) D& 2l+u&)) 1 +a@)E
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A5(8) _ 1 (k—j) p—((j+k) p+2)¢
D) (p—1) &)1 —a(&))(1+a(é)) 1 +a(é)&
- 1 {_(1—52>a(5)p_ 2 }
(p—Da&)1—aX&) | (1+a(é)é)?  1+a(é)E
_ 1 PP N f}
(p—l)(l—az(é))(lﬂ(é)f)z{ (1= p—2 I
since
(1-)a(&) o
Tren?) =(j+k)E—(k—)).
Hence by Lemma 8§,
S N { 1-¢
D@ PO 0w @ ra @)
N 1+¢ L (1=8) p+28+2¢/x(¢) } (30)
2(1+o(E))(1+a(&)E)  (p— (1 —a(E)(1 +a(é)é)?S

It is clear that D'(&) = pa/(&) Dy(€) and so if € {c¢}, ., then by (27),

DUODIE) . (DO £
DE)E a(£)<D(é)> P T ag e

Using (30) and (31) in (28) we conclude that if e {c}, ,, then for all
pe(0,00)\{1} we have

o8 {,,<<p—1>(1—f>
o) PN T (1 T ad)

(p—D(A+&) (1) p+2&+2¢/n

201+ a)(1+aé) (1 —a)(1+o)(1+ac)?

(31)

¢ o))
TP e T (T4 ad?) (14l

Since
1 I+ (k=pE—(14j+k) & | —¢2

WO GrhE—Gh—))  CUrRE—Gh—j
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we conclude that

DYE)_ p(E)?
D,6) " (I—a?)(1 +0)?

. 28 > 1—0(2}
X{“ “(”(Hk)é—(k—j) T (32)

From (12) we deduce that

l+k—j—(1+j+k)é&

1+ (k=) E—(1+j+k) &>
1 —k+j+(1+j+k)é

L+(k—j)E—(1+j+k) &

I—a(&)=(1+)

I+a(l)=(1-9)

and

I+ j4+k)j+k)E =201+ j+k)k—)E+(k—j)>+j+k

(&)= (I—(k—j)é—(1+j+k) &2

Hence by Lemma 5,
0, (&) =1+ j+K)(j+k) E =21+ j+k)k = )NE+ (k= ))*+ j+k>0,
and for £e{c}, , we have

Py p(1=&* (@& ))2{(2+j+k)é—(k—j)
P& (I=a)(1+ad)? | (j+k)E—(k—))

+1—(k—j)2+2(k—j)(l+j+k) (1+j+k)? }
)

;<)

_ p(1—-&)('(¢))? ms(< (33)

{(I—a) (I +a)(1+a&)? L (j+K)E— (k= )} 0,4(E)

where

n3(&) = (j+h)j+k+1) & =3(k—j)(j+k+1)&
+{3(+K)+k+1) =8k} E—(k—j)(j+k+1).
Note that n4(&)=6(j+k+1)(j+k)(E—CE*) is negative for &< E* and
positive for &> &*; ie., m5(¢) is strictly decreasing on [ &, £*) and strictly

increasing on (&*, &,]. Since n5(E*) = (4jk/(j+k))(j+k+3) >0 it follows
that 7#5(&)>0 for all € in [&,,&,]. So m3 can have at most one zero in
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[&4, &,]. In fact, it does have one zero in (&, &*). This is seen as follows.
The quantity (j+ k)& — (k—j) is negative for £ <¢&* and tends to zero as
¢ — &*— . Hence, from (32) and (33) we conclude that 74(&) is positive in
(&* —0, &*) for all small 6 >0. The same formulae can be similarly used
to conclude that 7,4(&) is negative in (&, &, 4+ ) for all small positive 6.
Alternatively, using “Mathematica” (Wolfram Research, Inc.) or by patient
calculation we can check that (j+k)?7,(&*)=8jk(k—j)>0 for k> j,
whereas (j+k +1)?n5(¢,) = —8k(j+ 1)*><0. Hence, 75 must have a zero
in (&, &*) for k> j.

Let now k> j. If &; denotes the only zero of 75 in (&, *) then 75 is
negative on [ &, &;) and positive on (&5, £*]. From (32) and (33) we see
that at any zero of @), which lies in (¢;, *), the sign of @7(¢) is the same
as the sign of 73(¢). Thus, @(C) is negative at each ¢ belonging to
{c}, e (&1, &) and positive at any ¢ that belongs to {c}, . N (&5, ).
From (24) and (25) it follows that @, has at least one critical point in
(&1, E*) if j<k. If such a point lies in (&,, &;), then it must be a point of
local maximum for @,. Since each point in {c}, , N (&, &;) can only be a
point of local maximum there can be at most one critical point of @, in
(&1, ¢3). Indeed, two local maxima are separated by a local minimum. If @,
has a critical point &' which lies in (&5, &*) then it must be a point of local
minimum for @,. Hence @(¢) should be positive in (&', ¢+ 0') for some
0'>0. In view of (25), @/(¢) must have at least one zero in (¢, ¢*), too,
which can only be a point of local minimum, since @/(¢)>0 at all the
points in {c¢}, , N (&5, £*). But, then there must be a point of local maxi-
mum between the two local minima, which is a contradiction. So, @, does
not really have a critical point in (&5, E*). From (32) it follows that
@7(&) <0 for all & in {c}, , N (E*, &) So, any critical point of @, in
(&*, &) must be a local maximum. But if such a point ¢" existed, @)(¢)
would be positive in (&" — 9", &") for some 0” >0. In view of (25), there
would then be a zero of @), in (¢*, £") if j <k. This zero of @), would again
be a point of local maximum and we are led to a contradiction. So, @, has
no critical point in [*, £,] if j<k. As it has been pointed out earlier, @,
must, because of (24) and (26), vanish at least once in (&, &,). The above
argument shows that it cannot do so in (&5, &,) if j <k; but it may vanish
in (&4, ¢3), though not more than once since a zero of @/ in this interval
is necessarily a point of local maximum for @,. Summarizing the above
discussion we have noted that

(i) @, has at least one zero in (&, £3];
(i) @), has at most one zero in (¢, €3);

(iii) all the zeros of @), in (&, {3) are simple, ie., @, #0 if @, =0;
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(iv) @ has no zero in (5, &5);
(V) D,(&4)>0, P(S,—) <0 and if k> j, then &,(<*) <0.

Now let us suppose that @) has a zero in (¢, ¢3), call it & From (22)
and the definition of @, given in Remark 4 it can be concluded with the
help of a known result [4, Sect. 5.51] that @, is an analytic function of (the
complex variable £) in a small neighbourhood of the point &;. This implies
that @), can only have a zero of finite multiplicity at ¢;. From (v) and (iii)
it follows that @/(¢) >0 for ¢, <¢<¢ and @),(¢) <0 for £ < <&5. Since
@,(¢*) <0, (iv) implies that &3, if it is a zero of @/, must be of even multi-
plicity, so that @(¢) <0 for {3 << &,. The conclusion is that, in this
case, the Afunction ®,(&) is strictly increasing on (&, &) and strictly decreas-
ing on (&, &,); ie., (21) holds.

The other possibility is that @/, has no zero in (¢, ¢3). Then it must have
a zero at 3. Since @,(&*) <0 it follows from (iv) that the zero of @), at ¢
must be of odd multiplicity. So, in this case @)(¢) is strictly increasing on
(&, &;) and strictly decreasing on (&5, &,); i.e., (21) holds again.

If j=k, then ¢; = —¢, and ¢* = 0. According to (25), @,(0) =0. Further-
more, in this case, formulae (32) and (33) reduce to

D) pd(&)? {(l_éz)<k+1>+1—a2}

D,(¢)  (1—a?)(1 +a)? k «(<)

and

2,(&) p(1=E)((£))? {k(2k +1) &+ k(2k +3)}

D,(<¢) o 2k{kQ2k+ 1) E 4k {(1—o)(1 +a)(1 +aé)?}’

respectively. Hence, @7(¢) <0 if € is a critical point of @, lying in (&4, &5).
Taking also into account that @, is even, no point of (¢;, 0) or of (0, &,)
can be a zero of @, Since @, must have a critical point in (¢, ;) it (the
critical point) must lie at £ =0=£&* and it must be a point of local as well
as global maximum for @,.

Next we show that for all p e (0, 0),

D1 mi)>Pp(Cony) M k>j=n—1—k (34)
To start with we observe that

Py(&r i) _ P+ DI+ 1) p+ 1) Tlkp +1) _ 9,())
Py Eoni) (GHDVIVIEP T(jp+ D) I((k+1) p+1)  g,(k)
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where

X I'((x+1)p+1)
(x+1)>*+D72 Fixp+1)

Pp(x) 1=
So, (34) follows from the following lemma.
Lemma 9. For all p>0, the function ¢, is a strictly decreasing function

of x on [ 1, o).

Proof. Clearly,

lgol’,(x):F’((x—l—1)p~|—1)_1"’(xp+1)_1 <1+1>
poy(x) I((x+1)p+1) I'lxp+1) '

According to a known formula [4, p. 228, Example 10],

1 ® /1 1
I'(z) - 7273)4_2:1 <v2+v>’

where y is the Euler’s constant. Hence

l(pl’,(x)_ 1 1
pgop(x)_xp+l (x+1)p+1

_|._

||M8

{11}
v (x+1)p+v+1

b e (1)
——— —log (1 +-
Sy oxptv+1 b

* 1 1
g {xp+v (x+1)p+v}_10g<1+x>’

since 1/v—1/((x+1) p+v+1)=0(r~2) as v— oo.
Now we note that 1/(xp+1¢)—1/((x+1) p+1¢) is a positive decreasing
function of ¢ and hence for all ve N,

I8

1 1 v { 1 1 }
- <f — dt
xp+v (x+D)p+v J_1lxp+t (x+1)p+t
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Thus

1(”1’(’6)4@{ L }dt—log(l—l—l)
Poy(x) Jo lxp+i (x+1)p+1 x

T( ] 1 1
= li — dt—1 -
TI—I;ICIDL) {xp—i—t (x—i—l)p—i—t} Og<1+x>

. xp+T >
o Og<(x+1)p+T

Lemma 9 is proved and so is (34).

The final step. We have shown that if k > (n—1)/2 and 0 < p < o0, then

min  D,(E)=D,(&, )

EnmkSES<E i
Since &, , x =&, k41 it follows that if k> j=n—1—k, then

min  @,(¢) < min @,(&)

Eely ki cely i

and so for 1 <u<[n/2] and p>0,

min Cbp(g’)zdip< —>

—1+2u/n) <E<1—(2u/n)

:< n" >I,2F(up+1)F((n—/1)p+l)
wi(n— )" I'(pn+2) '

In particular,

min @p(§)=q§p<l>

—1+2/n<éE<1—2/n

_< " >P2F(p+1)r((n—1)p+1)
(n—1)"—! I'(pn+2) ’

As indicated earlier, M, , , .=(27" ®,(£))"” and so recalling that

gﬁn,ﬂ, P inf imn, up &
—14+2u/n<E<1—2u/n

we obtain Theorem 1 for all p>0 and x> 1.
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2.3. The Case p=0 and u>=1 of Theorem 1

Now let p=0. From the case 0 < p < oo, which has already been settled,
it follows that if fe€ %, ,, then

g

1t "
los=exp (3 [ tog 17000 d )2 e 171
wherein equality holds for all polynomials of the form ¢(1+ x)"~# (1 — x)#
and ¢(1 4+ x)* (1 —x)"~*. However, having proved it by a limiting process
we cannot claim that the inequality is strict for all other polynomials
belonging to #, ,. But this is true and can be seen as follows.
For el ., let

R (l—x)j(l—i-x)k(l—i-oc(f)x) »
=/ 0+ ofF 1 +ue)e)|

o0u&)i=[ 1

where j=n—1—k and a(f) is as in (12). The information given in
Remark 5 shows that

men,,u,o,i:exp(%wo,k(é))a (éEIn,k)'

Using the formula for «(&) given in (12) we see that for e (&, 4, €2 n 1)
we have

1 2
&)= (@] o )

T P T T
Simple calculations show that
wo (&)= +oo as (&,
whereas
wo (&) > —o0 as L&
Furthermore, if &* =f:’k is as in (20), then
0o, 1 (E*) <0 if j<k, o 1 (E*)=0 if j=k.

We leave it to the reader to verify that if ¢ is a critical point of w, ; in

(&1, &), e, if

fl X dx— 2&
—11+a()x 1+a(é)E



116 DRYANOV AND RAHMAN

then
” — 20(’(5)
o, 1 (&)= (1 —a?)(1 4+ a(&)E)?
|+ -2 38 1 -
(&)

(35)

2(o'(¢))?
(1 —a?)(1 +a(&)¢)?

) 2& (I—a)(1+a)
X{(l_é)<l+(j+k)é—(k—j)>+ (&) }

Compare this with (32). Imitating that part of the proof of Theorem 1 (in
the case p > 0), which follows formula (32), we arrive at the conclusion that
for 1 <u<[n/2]

iDtn"u’ 0 - wtn’ﬂ, 0,¢&

if and only if &= 4+ (1 —(2u/n)). Now, some fairly simple calculations lead
us to the proof of Theorem 1 in the remaining case p =0.

24, The Case u=0 of Theorem 1

Now we consider the case 4 =0. From Remark 5 it follows that

m =min{ inf M, , ., inf M, 0 e Mo pi)-

, 0,
P 0o<eE<l—2/n 1—2/n<é<l1

Let us determine min{inf; 5, -1 M, o p s Moo 51} In view of
Remark 5, we have

inf M = inf P, . = min P, .
l—om<e<t  mOPS 172/n$§<1H mn-rely 172/n<§<1H mn=relp

First let 0 <p < oo and extend the definition of ®,(¢) to values of ¢ in
(1—2/n,1]. Note that k=nrn—1. Thus, for all £ in [1—2/n,1] and all
>0,

D) =2 Py nrcly

Y B[R i (R 041
LT ar e

» -1
dx <oc(§):= _:f+l>‘
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The formula (22) for @,(¢)/®,(£) remains valid. It shows that

2 n
@ (1-24 )=
< n*) 20—1) "

and so @,(¢) increases with ¢ in the immediate neighbourhood of 1 —2/n.
As in the proof of the case x> 1, we see that @, has one and only one
critical point in (1 —2/n, 1), which lies at (n—1)/(n+1). So,

inf  @,(¢)=min {cpl <1 —i> @1(1)}.

1-2/n<é<1

Let pe(0, o)\l and let {c},,_, denote the critical points of @, in
(1—2/n,1). Formula (32) which gives the value of ®,(&)/®,({) at each
point ¢ € {c¢}, ,_; remains valid and gives

?,(<) p(o'(¢))? 1-&

P8 (1= +a(&) &) n—1"

ie., @,(<) is negative at all the critical points of @, which lie in (1 —2/n, 1).
This means that any local extremum of @, in (1—2/n, 1) can only be a
local maximum. Hence,

inf  @,(&)=min {qsp <1 —i) qﬁ,,(1)}

1-2/n<&<1

for all pe (0, o0); ie.,

] ! ) 1 N\\V7 /1 1/p
-t e (o (12))" (fo0) 7}

As shown earlier (see the discussion following Remark 4), (27'®,(1))"? >
1P w11l s0

. . . (1 2
min{  inf %tn’o,p,é,ﬂﬁn,o,p,l}p:mm{2@,(1—”), |Pi‘,n1,1|§}

1-2/mn<é<l
=m1n{ an,n—l,* Hﬁa HP:,n—l, 1“1’;}
It follows from Lemma 6 that

UG n—1.41l7 n"? I((n—1)p+1)I(p+1)
1Pyl (n=1)"= D2 I'(np+1) '
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which, we claim, is larger than 1. This is because

I'(xp+1) (x—1)="Dbr
Moot  xv T+l

(36)

for all x> 1. Indeed, if 4(x) denotes the left-hand side of (36), then, using
the formula for I"'(z)/I'(z) mentioned earlier, we get

14(x) T'Gp+l)
pAlx) I(xp+1)

I((x—1) p+1)
Mx—1) pr1) T1o8

X

_i{ 1 1 }4—10 x—1
_v=1 (x—=1)p+v xp+v g X

© 1 1 x—1
— 1
<L {(xl)p—f—t xp—i—t}dH— o8

x b
since {1/((x—1) p+1)—1/(xp+1)} is a positive decreasing function of 7.
Thus,

1 4'(x)

— < lim JT{ ! ! }dt—klo x|
pA(x) 1-wdo ((x—1)p+t xp+t &

—=
which proves (24). Hence,

0,

o Ll 14\ O\
mln{l_z/lnniédEIR,,,O,I,,C,EIR,‘,O,I,,I}=<2J1< 3 > dx> .

In the course of the above argument we have also shown that

inf m, > min inf m, o M, 0 ,1t;
0<E<l—2/n n,1,p, ¢ {1_2/n<§<1 n,0, p, &> n, 0, p, }’
SO

Let /lx\?  \W7
9Jz,,,0,,,=<2j_1< . > dx> (0<p<om).

Equivalently, for each fe %, , =2,

1flloo < (np+ 1)V || £, (37)

where we have an equality only for constant multiples of ¢, o or of ¢q,, ,.
This proves Theorem 1 in the case u =0 and p > 0.
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Letting p tend to zero in (37) we conclude that for all fe 2, ,, we have

11 o < €™ 11 o

wherein equality holds for polynomials of the form ¢(1 + x)” and ¢(1 — x)".
For other polynomials in %, , =%,, the inequality is strict; that can be
proved the way we identified the extremal polynomials in the case p =0
and u > 1. Little new is involved; we leave the details to the reader.

3. PROOF OF COROLLARY 1

Let f be a polynomial of degree at most n having no zero in the open
unit disk. Suppose in addition, that f has zeros of multiplicity at least u at
—1 and 1 where 0 <u <[n/2]. Then F(z):= f(z) f(Z) is a polynomial of
degree at most 2n with real coefficients and having no zeros in the open
unit disk. Besides, F has zeros of multiplicity at least 2u at —1 and 1.

Hence, by Theorem 1,
HFHp/2> Han,Z‘u,* Hp/Z HFHoo> OSP < 0, (39)

unless F'is a constant multiple of ¢, 5, Or ¢, 2,_2,. However, F can be a
constant multiple of g5, 5, O q2, 2,2, Only if fis a constant (possibly non-
real) multiple of ¢, , or of g, ,_,. From this, Corollary 1 follows since

HFHp/ZZ Hf“;a Han, 2/1,0”;1/2: an,/A,OH;n and ”F”oo = Hf”io

4. PROOF OF COROLLARY 2

According to Theorem 1, if f or — f belongs to Z, |, then

(n—1)"—! I'(pn+2) /p
[/l < e <F(pn—p+1)F(p+1)> 1/ ,,

where equality holds only for constant multiples of ¢, ; or of ¢,, ,,_;.
Corollary 2 follows by combining this result with another result accord-

ing to which if f or — f belongs to Z, ,, then [3, p. 205, Corollary 1] (also

see [9])

"

(n—1)"—1

with equality only for constant multiples of ¢, , or of ¢, ,,_;.

1
1/ oo <5 11 oo 5
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5. FINAL REMARKS

It is not without interest that our inequalities are valid and also sharp
r all p>0. The case pe[0, 1) usually presents difficulties because |-,

ceases to be a norm for such values of p. This point is well illustrated by
the paper [2].

o
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