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For any continuous function f : [&1, 1] [ C and any p # (0, �), let & f &p :=
(2&1 �1

&1 | f (x)| p dx)1�p ; in addition, let & f &� :=max&1�x�1 | f (x)|. It is known
that if f is a polynomial of degree n, then for all p>0,

& f &��Cp n2�p & f &p ,

where Cp is a constant depending on p but not on n. In this result of Nikolski@$
(1951), which was independently obtained by Szego� and Zygmund (1954), the
order of magnitude of the bound is the best possible. We obtain a sharp version of
this inequality for polynomials not vanishing in the open unit disk. As an applica-
tion we prove the following result. If f is a real polynomial of degree n such that
f (&1)= f (1)=0 and f (z){0 in the open unit disk, then for p>0 the quantity
& f $&� �& f &p is maximized by polynomials of the form c(1+x)n&1 (1&x),
c(1+x)(1&x)n&1, where c # R"[0]. This extends an inequality of Erdo� s (1940).
� 1999 Academic Press

1. INTRODUCTION AND STATEMENT OF RESULTS

For any continuous function f : [&1, 1] [ C and any p # (0, �) let

& f &p :=\ 1
2 |

1

&1
| f (x)| p dx+

1�p

;
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in addition, let

& f &� := max
&1�x�1

| f (x)| .

It is known (see [7, Sect. 6.8]) that & f &p tends to the limit

exp \ 1
2 |

1

&1
log | f (x)| dx+

as p � 0. This is exactly the value given to the functional & f &p when p=0.
It was proved by Erdo� s and Gru� nwald [5, Theorem III] that if f is a

polynomial having only real zeros and &1, 1 as consecutive zeros, then
& f &1�(2�3) & f &�. Considering the polynomial 1&x2 we see that the
inequality is sharp. Mentioning (1&x2)n as an example they remarked
[5, p. 358] that the same ratio may assume values less than any preassigned
number howsoever small. We may still ask for the precise lower bound for
& f &1 �& f &� if the degree of f does not exceed a fixed integer n. It turns out
that this ratio is minimized by polynomials of the form c(1+x)(1&x)n&1

and c(1+x)n&1 (1&x), where c{0. In fact, we shall consider the ratio
& f &p �& f &� for an arbitrary p�0.

Let Fn be the class of all polynomials of degree at most n. We say that
f # Pn if

(i) f # Fn ;

(ii) f (z){0 for |z|<1;

(iii) f (x)>0 for &1<x<1.

Given + # [0, ..., [n�2]], the set of all polynomials in Pn which have zeros
of multiplicity at least + at &1 and 1 will be denoted by Pn, + . Note that
Pn, 0 is the same as Pn .

For n # N, + # [0, ..., [n�2]] and p # [0, �), let

Mn, +, p :=inf [& f &p : f # Pn, + , & f &�=1]. (1)

Furthermore for k # [0, ..., n], let

qn, k(x) :=(1+x)k (1&x)n&k, qn, k, V(x) :=
nnqn, k(x)

2nkk(n&k)n&k . (2)

Note that &qn, k, V&�=1.
We prove

Theorem 1. Let f be a polynomial of degree at most n with real coef-
ficients and having no zeros in the open unit disk. Suppose, in addition, that

93MEAN VALUES OF POLYNOMIALS



f has zeros of multiplicity at least + at &1 and 1, where 0�+�[n�2]. If f
is not a constant multiple of qn, + or of qn, n&+ , then

& f &p>&qn, +, V&p & f &� (0� p<�).

The analogue of the inequality of Nikolski@$ , and Szego� and Zygmund,
for polynomials not vanishing in |z|<1, is contained in the following
simple consequence of Theorem 1.

Corollary 1. Let f be a polynomial of degree at most n having no zeros
in the open unit disk but whose coefficients may be nonreal. Suppose, in
addition, that f (z) :=(1&z2)+ g(z), where 0�+�[n�2] and g is a polyno-
mial of degree at most n&2+. Then for 0�p<�, we have

& f &��
& f &p

&qn, +, V&p
,

where equality holds only for constant multiples of qn, +, V and qn, n&+, V .

Inequality (4) can also be written as

& f &��{
+ +(n&+)n&+

nn \ 1( pn+2)
1(+p+1) 1((n&+) p+1)+

1�p

& f &p,

++(n&+)n&+

nn en & f &p ,

0<p<�

p=0,

where + is as in Corollary 1.
Here is another consequence of Theorem 1.

Corollary 2. Let f be a real polynomial of degree at most n, such that
f (&1)=f (1)=0 and f (z){0 for |z|<1. If f is not a constant multiple of
qn, 1 or of qn, n&1 , then

& f $&�<
&q$n, 1&�

&qn, 1 & p
& f & p (0� p<�).

This corollary is an extension of a result of Erdo� s [5, p. 310].

2. PROOF OF THEOREM 1

For the proof of Theorem 1, we shall assume that f (x)>0 for &1<x
<1 and & f &�=1. We shall show that for each + # [0, ..., [n�2]] and
0� p<�, the infimum Mn, +, p defined in (1) is attained only when f is
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qn, +, V or qn, n&+, V . The proof of Theorem 1 is rather long, and so we shall
present it as a sequence of lemmas and connecting paragraphs.

2.1. Preparatory Lemmas

Lemma 1. Given n, +, and p as above, there exists a polynomial F belong-
ing to Pn, + with &F&�=1 such that &F&p=Mn, +, p .

Proof. If f (z) :=�n
&=0 a&z& belongs to Pn, + and & f &�=1, then

|a& |�\n
&+ for 0�&�n.

Indeed, f (z) can be expressed as a0 >n
&=1 (1&`&z), where |`& |�1 for

1�&�n and so

|a& |�a0 \n
&+= f (0) \n

&+�\n
&+ .

Note in addition that

1= max
&1�x�1

f (x)�a0 :
n

&=0
\n

&+=2na0 ;

i.e.,

a0�2&n.

For each positive integer m there exists a polynomial

hm(z) := :
n

&=0

a&, mz&

belonging to Pn, + with &hm&�=1 such that

&hm&p<Mn, +, p+m&1.

Since |a&, m |�( n
&) for all m # N and 0�&�n, we can use a standard

argument to select a subsequence [hm1
, ..., hmk

, ...] of [hm] converging
uniformly on any compact subset of C to a polynomial F in Fn . Since
hm(0)�2&n for each m we note that F cannot be identically zero. Hence, by
a well-known theorem of Hurwitz [1, p. 176], F cannot have any zeros in
|z|<1 although it must have zeros of multiplicity at least + at &1 and 1.
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Hence, the limiting polynomial F belongs to Pn, + . As regards the sub-
sequence hm1

, ..., hmk
, ..., we could have assumed (by choosing a further

subsequence if necessary) that if !k is the point of [&1, 1] where hmk
takes

the value 1, then !1 , ..., !k , ... tends to a point !*. Using the mean value
theorem and a well-known inequality of A. Markov, according to which
&h$&��n2 &h&� for every polynomial h of degree at most n, we conclude
that F(!*)=1. Thus, &F&� is equal to 1 since, obviously, it cannot be
larger than 1.

Lemma 2. If F # Pn, + and &F&p=Mn, +, p , then the zeros of F must be all
real.

Proof. Let us suppose that

F(z) :=G(z)(z&a&ib)(z&a+ib),

where a, b # R, b{0, a2+b2�1. Let ! be a point in [&1, 1] where F
assumes the value 1 and consider the polynomial

F(=; z) :=F(z)&=G(z)(z&!)2

=G(z)[(1&=) z2&2(a&=!) z+a2+b2&=!2].

For small positive = the zeros of the quadratic (1&=) z2&2(a&=!) z+a2

+b2&=!2 are complex and the product of their moduli is (a2+b2&=!2)�
(1&=), which is greater than or equal to 1. For such values of =, the poly-
nomial F(=; } ) belongs to Pn, + and &F(=; } )&�=F(=; !)=1. However,
&F(=; } )&p<&F&p , which is a contradiction.

Remark 1. In Lemma 2 we have shown that the polynomial F cannot
have non-real zeros. So, while looking for a polynomial in Pn, + for which
Mn, +, p is attained, we only need to examine those whose zeros are all real.

We shall say that f # ^n, + if

v f # Pn, + ;

v the zeros of f are all real;

v & f &�=1.

According to Lemma 2,

Mn, +, p=inf[& f &p : f # ^n, +]. (6)
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It is a simple consequence of Rolle's theorem that a polynomial with
only real zeros has only one critical point between two consecutive zeros.
So, each polynomial f # ^n, + attains the value 1 at exactly one point in
[&1, 1], which we shall always denote by !.

Lemma 3. Let f # ^n, + . If ! belongs to [&1, 1] and

f (!)= max
&1�x�1

f (x),

then |!|�1&2+�n.

Proof. There is nothing to prove when +=0; so, let +�1. Due to
obvious symmetry, it is enough to prove that ! � (1&2+�n, 1). Clearly,
f $(!) must be zero. If f (x) :=c(x&1)+ >n&+

&=1 (x&x&), then f $(!) can vanish
only if

A(!) := :
n&+

&=1

1
!&x&

&
+

1&!

does. But 1�(!&x&)�1�(1+!) for 1�&�n&+. Hence

A(!)�
n&+
1+!

&
+

1&!
=

n&2+&n!
1&!2 <0 if ! # \1&

2+
n

, 1+ .

Lemma 4. Let F # ^n, + and &F& p=Mn, +, p . Then

F(x) :=c(1&x) j (1+x)k (1+:x) (c>0, j+k=n&1, &1�:�1).

In addition, j�+ or j�+&1 according to whether : # (&1, 1] or :=&1
and k�+ or k�+&1 according to whether : # [&1, 1) or :=1.

Proof. Let ! be the point of [&1, 1] where F attains the value 1. First
we observe that F cannot have zeros in (&�, &1) and (1, �) at the same
time. Suppose it does. Let *1 be the smallest zero of F and *m the largest.
It is easily seen that for all small =>0 the polynomial

F=, 1(x) :=F(x)+=
F(x)

(x&*1)(x&*m)
(x&!)2

belongs to ^n, + and F=, 1(x)�F(x) for all x # [&1, 1], the inequality being
strict in (&1, 1)"[!]. So F may have zeros in (&�, &1) or in (1, �) but
not in both.
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Assume that F has no zeros in (&�, &1). We claim that F cannot have
two or more distinct zeros in (1, �). Suppose it does. Let *m be the largest
zero and *l the largest but one. It is geometrically evident that for all small
=>0, the polynomial

F=, 2(x) :=F(x)&=
F(x)

(x&*l)(x&*m)
(x&!)2

belongs to ^n, + and F=, 2(x)�F(x) for all x # [&1, 1], the inequality being
strict in (&1, 1)"[!]. So F can have at most one distinct zero in
(&�, &1) _ (1, �).

Suppose that F has a zero *m in (1, �). We claim that *m cannot be a
multiple zero. Suppose it is. Then for all small =>0, the polynomial

F=, 3(x) :=F(x)&=
F(x)

(x&*m)2 (x&!)2

=
F(x)

(x&*m)2 [(1&=) x2&2(*m&=!)x+*2
m&=!2]

belongs to ^n, + . Indeed, F=, 3(!)=F(!)=1 and there exists =*>0 such that
for all = # (0, =*) the quadratic (1&=) x2&2(*m&=!)x+*2

m&=!2 has two
different real zeros, both lying in (1, �). In addition, F=, 3(x)<F(x) for all
x # (&1, 1)"[!]. So, if F has a zero in (&�, &1) _ (1, �), it should be
simple.

We have proved that F must be of the form

F(x) :=c(1&x) j (1+x)k (1+:x)

with c>0, j+k�n&1 and &1�:�1. In addition, j�+ or j�+&1
according to whether : # (&1, 1] or :=&1 and k�+ or k�+&1 accord-
ing as : # [&1, 1) or :=1. We claim that the sum of the multiplicities of
the zeros of F at &1 and 1 cannot be less than n&1. Suppose it is. First
let : # (&1, 0) _ (0, 1). The polynomial

F=, 4(x) :=F(x)&=
F(x)

(1+:x)
(x&!)2

belongs to ^n, + for all small =>0. Furthermore, F=, 4(x)<F(x) for all
x # (&1, 1)"[!]. If : # [&1, 0, 1] then we have to prove that F(x) cannot
be of the form c(1&x) j (1+x)k with j+k�n&2. For this we consider the
polynomial

F=, 5(x) :=F(x)&=F(x)(x&!)2,

which is of degree at most n, and obtain a contradiction.
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We say that a polynomial f belongs to ?n, + if

v it is of the form

f (x) :=c(1+x)k (1&x)n&k&1 (1+:x),

where 0�k�n&1, &1�:�1, c>0;

v it has zeros of multiplicity at least + at &1 and +1;

v & f &�=1.

Lemma 4 in conjunction with Lemma 2 says that while looking for a
polynomial in Pn, + for which Mn, +, p is attained, we may restrict our search
to those which belong to ?n, + . In other words,

Mn, +, p=inf[& f &p : f # ?n, +]. (7)

Given n # N, + # [0, ..., [n�2]] and ! # [&1+2+�n, 1&2+�n], we say
that f # ?n, +, ! if f # ?n, + and f (!)=1. Let

Mn, +, p, ! :=inf[& f &p : f # ?n, +, !], &1+
2+
n

�!�1&
2+
n

. (8)

Then, clearly

Mn, +, p= inf
|!|�1&2+�n

Mn, +, p, != inf
0�!�1&2+�n

Mn, +, p, ! . (9)

For 0�k�n&1, let

!1, n, k :=&1+
2k
n

, !2, n, k :=&1+
2k+2

n
(10)

and In, k :=[!1, n, k , !2, n, k]. The following lemma helps us to identify the
elements of ?n, +, ! .

Lemma 5. Let n�3 and 1�k�n&2. For each ! in In, k there exists one
and only one :=:(!) in [&1, 1] such that the derivative of

Pn, k(:; x) :=(1+x)k (1&x)n&1&k (1+:x)

vanishes at !. Moreover, :(!) increases strictly from &1 to 1 as ! increases
from one end of the interval [!1, n, k , !2, n, k] to the other.

99MEAN VALUES OF POLYNOMIALS



Proof. The derivative of Pn, k(:; } ) with respect to x vanishes at ! if and
only if

:=:(!) :=
(n&1)!+(n&2k&1)
1&(n&2k&1)!&n!2 .

We show that |:(!)|�1 if ! # In, k . Setting

gn(!) :=n!2+(n&2k&1) !&1

we see that

gn(&1)=2k>0, gn \&1+
2k
n +=&

2k
n

<0,

gn \&1+
2k+2

n +=&
2
n

(n&k&1)<0, gn(1)=2(n&k&1)>0.

Hence gn has a zero in (&1, &1+2k�n) and also in (&1+(2k+2)�n, 1).
Consequently, it cannot have any zero in In, k . This implies that :(!) is a
well-defined real number for all ! in In, k . Elementary calculations show
that :(!)�1 for ! # In, k if and only if (1+!)(!+1&(2k+2)�n)�0, which
is certainly true for all ! in In, k . In addition, &1�:(!) for ! # In, k if and
only if (1&!)(!+1&2k�n)�0 and so for all ! # In, k . Thus, we have
proved that &1�:(!)�1 for all ! # In, k .

As can be easily verified, :(!1, n, k)=&1 and :(!2, n, k)=1. We have to
show that that :(!) increases strictly from &1 to +1 as ! increases from
one end of the interval In, k to the other. For all ! # In, k we have

:$(!)=
(n!+n&2k&1)2+n&1&n!2

[1&(n&2k&1) !&n!2]2 . (11)

Hence :$(!)>0 if n&1&n!2>0, which certainly holds if |!|�1&1�n.
Since In, k /[&1+1�n, 1&1�n] it follows that :$(!)>0 for all ! # In, k .

Remark 2. In Lemma 5, we have proved that for each ! in In, k ,
1�k�n&2 there exists one and only one : # [&1, 1] such that

�
�x

Pn, k(:; x) } x=!
=0,
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which is a necessary condition for the maximum of cPn, k(:; } ) to be
attained at !. It follows that for any given ! in In, k , 1�k�n&2 the set
?n, k, ! contains just one element, namely the polynomial

Pn, k, !(x) :=
1

Pn, k(:; !)
Pn, k(:; x),

(12)

:(!) :=
(n&1)!+(n&2k&1)
1&(n&2k&1)!&n!2 .

As k varies from + to n&+&1 the intervals In, k cover the interval
[&1+2+�n, 1&2+�n]. Using the obvious symmetry we conclude that for
each ! in [&1+2+�n, 1&2+�n], 1�+�[n�2] the set ?n, +, ! has one and
only one element. The same can be said for ! in (&1, &1+2�n) _ (1&2�n, 1)
when +=0. In fact, simple calculations show that for any ! in (&1, &1+2�n)
the set ?n, 0, ! contains the polynomial

Pn, 0, !(x) :=\1&x
1&!+

n&1 n!&1&(n&1)x
!&1

,

&1<!<&1+
2
n

(13)

and no other; for ! in (1&2�n, 1) the only element of ?n, 0, ! is the polynomial

Pn, n&1, !(x) :=\1+x
1+!+

n&1 n!+1&(n&1)x
!+1

,

1&
2
n

<!<1. (14)

It may be added that for &1<!<&1+2�n we have

Pn, 0, !(x)=
(1&x)n&1 (1+:(!)x)
(1&!)n&1 (1+:(!)!)

,

where :(!) :=&(n&1)�(n!&1) increases from (n&1)�(n+1) to 1 as !
increases from &1 to &1+2�n. For 1&2�n<!<1 we have

Pn, n&1, !(x)=
(1+x)n&1 (1+:(!)x)
(1+!)n&1 (1+:(!)!)

,

where :(!) :=&(n&1)�(n!+1) increases from &1 to &(n&1)�(n+1) as
! increases from 1&2�n to 1.
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Remark 3. For each ! # [&1, 1] there is only one k # [0, ..., n&1]
such that ! # In, k except when ! is of the form &1+2k�n. In the latter case
! belongs to In, k for two consecutive values of k; however, there is no
ambiguity in the definition of Pn, k, ! because Pn, k, ! for !=!2, n, k and
Pn, k+1, ! for !=!1, n, k+1 are the same.

Definition. Given n # N, + # [0, ..., [n�2]], p # [0, �) and ! in
[&1+2+�n, 1&2+�n] let us denote by En, +, ! the set of all polynomials f in
?n, +, ! such that & f &p=Mn, +, p, ! .

Remark 4. It follows from above that for 1�+�[n�2] and any ! in
[&1+2+�n, 1&2+�n] the set En, +, ! consists of only one element, namely
Pn, k, ! with k # [+, ..., n&+&1] such that ! # In, k . The same is true of
En, 0, ! , except possibly for !=\1.

What can we say about ?n, 0, 1 and ?n, 0, &1? For this we note that a poly-
nomial of the form

f (x) :=c(1+x)k (1&x)n&1&k (1+:x), &1�:�1, f (1)=1,

assumes its maximum on [&1, 1] at 1 if and only if

f (x)= f:(x) :=\1+x
2 +

n&1 1+:x
1+:

, &
n&1
n+1

�:�1.

It is easily checked that if :<:$ than 0< f:$(x)< f:(x) for all x # (&1, 1).
Hence & f:& p is a strictly decreasing function of : in [&(n&1)�(n+1), 1].
This implies that En, 0, 1 consists of just one polynomial, namely

P*n, n&1, 1(x) :=\1+x
2 +

n

. (15)

Similarly, En, 0, &1 has only one element, namely the polynomial

P*n, 0, &1(x) :=\1&x
2 +

n

. (16)

Remark 5. We conclude that for all p # [0, �) the value of Mn, +, p, ! is
determined as follows.

(i) First let ! # [&1+2�n, 1&2�n]. Then, as is easily seen, f can
belong to ?n, + only if + # [1, ..., [n�2]]. Furthermore, ! # In, k/[&1+2+�n,
1&2+�n], for some k # [1, ..., n&2] and

Mn, +, p, !=&Pn, k, ! & p , (17)

where Pn, k, ! is as in (12);
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(ii) if ! # (&1, &1+2�n) _ (1&2�n, 1), then

Mn, 0, p, !=&Pn, 0, !& p or Mn, 0, p, !=&Pn, n&1, !&p , (18)

according to whether ! lies in (&1, &1+2�n) or in (1&2�n, 1), respec-
tively;

(iii) finally for !=\1 we have

Mn, 0, p, 1=&P*n, n&1, 1& p , Mn, 0, p, &1=&P*n, 0, &1& p , (19)

where P*n, n&1, 1 and P*n, 0, &1 are as in (15) and (16), respectively.

2.2. The Case p>0 and +�1 of Theorem 1

First we will find Mn, +, p for p>0 and +�1. Let us set

8p(!) :=|
1

&1 }
(1&x) j (1+x)k (1+:(!)x)
(1&!) j (1+!)k (1+:(!)!) }

p

dx,

where k # [+, ..., n&1&+], j=n&1&k, p>0. Then from statement (i) of
Remark 5 we have

Mn, +, !, p=( 1
2 8p(!))1�p (! # In, k/[&1+2+�n, 1&2+�n]).

In order to determine

Mn, +, p , +�1

we shall study, in view of (9), the behaviour of 8p(!) over the subintervals
In, k=[!1, n, k , !2, n, k] (k=+, ..., n&+&1) of [&1+2+�n, 1&2+�n].
Because of obvious symmetry we may assume k� j (=n&1&k). We
remind the reader that :(!1, n, k)=&1, :(!2, n, k)=1 and that there is one
and only one point

!*=!*n, k :=
k& j
j+k

=
2k&(n&1)

n&1
(20)

in In, k such that :(!*)=0.
We shall end up with the conclusion

min
!1, n, k�!�!2, n, k

8p(!)=min[8p(!1, n, k), 8p(!2, n, k)]. (21)

The function 8p , whose definition depends on n as well as on k is differen-
tiable at each interior point of In, k . At !1, n, k the right-hand derivative
exists and at !2, n, k the left-hand derivative exists. So, 8$p(!1) is to be under-
stood as 8$p(!1+) and 8$p(!2) as 8$p(!2&). As we shall see, 8p has at
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most two critical points in In, k=[!1, n, k , !2, n, k] but only one point of local
extremum. It lies in (!1, n, k , !2, n, k) and is a point of local maximum.
A straightforward calculation gives

8$p(!)
8p(!)

= p:$(!) {�1
&1 (1&x) jp (1+x)kp (1+:(!)x) p&1x dx
�1

&1 (1&x) jp (1+x)kp (1+:(!)x) p dx

&
!

1+:(!) != . (22)

It is important to know the sign of 8$p(!) at the points

!1=!1, n, k=
k& j&1
j+k+1

, !*=
k& j
j+k

, !2=!2, n, k=
k& j+1
j+k+1

.

For this we need the following well-known formula.

Lemma 6 [4, pp. 212�214]. If R(a)>0 and R(b)>0, then

|
1

&1
(1&t)a&1 (1+t)b&1 dt=2a+b&1 1(a) 1(b)

1(a+b)
. (23)

The quantity 8$p(!)�8p(!) can be explicitly calculated at the points
!1 , !*, !2 since :(!1)=&1, :(!*)=0, :(!2)=1. Writing x in the form
&(1&x)+1 we obtain

8$p(!1+)
8p(!1)

= p:$(!1+) {�1
&1 (1&x) jp+ p&1 (1+x)kp x dx

�1
&1 (1&x) jp+ p (1+x)kp dx

&
!1

1&!1=
= p:$(!1+) {&1+

�1
&1 (1&x) jp+ p&1 (1+x)kp dx
�1

&1 (1&x) jp+ p (1+x)kp dx
&

!1

1&!1=
= p:$(!1+) {&1+

1
2

( j+k+1) p+1
( j+1) p

&
!1

1&!1= by Lemma 6

=
:$(!1+)
2( j+1)

,

where we have used the fact that !1=(k& j&1)�( j+k+1). As noted in
the proof of Lemma 5, :$(!)>0 for all ! in [&1+2�n, 1&2�n]; hence
8$p(!1+)>0. Obviously then there exists $1>0 such that

8$p(!)>0 for !1�!<!1+$1 . (24)
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Since :(!*)=0 we get

8$p(!*)
8p(!*)

= p:$(!*) {�1
&1 (1&x) jp (1+x)kp x dx
�1

&1 (1&x) jp (1+x)kp dx
&!*=

= p:$(!*) {&1+
�1

&1 (1&x) jp (1+x)kp+1 dx
�1

&1 (1&x) jp (1+x)kp dx
&!*=

= p:$(!*) { (k& j) p
jp+kp+2

&
k& j
j+k=

=&p:$(!*)
2(k& j)

( jp+kp+2)( j+k)
,

wherein we have used (23) and the fact that !*=(k& j)�( j+k). Hence,

8$p(!*)<0 if j<k, 8$p(!*)=0 if j=k. (25)

Similarly, using the fact that :(!2)=1, we obtain

8$p(!2&)
8p(!2)

=&
:$(!2&)
2(k+1)

.

There exists therefore a positive number $2 such that

8$p(!)<0 for !2&$2<!�!2 . (26)

Since 8p is an increasing function of ! in [!1 , !1+$1) and a decreasing
function of ! in (!2&$2 , !2], it must have at least one critical point in
(!1 , !2). Let [c]n, k be the set of all its critical points in (!1 , !2). Our argu-
ment will show that [c]n, k contains at most two points and that only one
of them is a point of local extremum. The point of local extremum is, in
fact, a point of local maximum; so (21) holds. The details follow.

It is convenient to introduce the notation

D1(!) :=|
1

&1
(1&x) jp (1+x)kp (1+:(!)x) p&1_x dx,

D0(!) :=|
1

&1
(1&x) jp (1+x)kp (1+:(!)x) p&1_1 dx,

and

D(!) :=|
1

&1
(1&x) jp (1+x)kp (1+:(!)x) p dx.
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Then

8$p(!)
8p(!)

= p:$(!) {D1(!)
D(!)

&
!

1+:(!)!= .

So

D1(!)
D(!)

=
!

1+:(!)!
if ! # [c]n, k . (27)

Taking (27) into account it is easily seen that if ! # [c]n, k , then

8"p(!)

8p(!)
=

8"p(!)

8p(!)
&{

8$p(!)

8p(!)=
2

= p:$(!) {D$1(!)
D(!)

&
D1(!) D$(!)

(D(!))2 &
1&:$(!) !2

(1+:(!)!)2= . (28)

Clearly, D(!)&D0(!)=:(!) D1(!); hence if ! # [c]n, k , then

D0(!)
D(!)

=
D(!)&:(!) D1(!)

D(!)
=1&:(!)

!
1+:(!)!

=
1

1+:(!)!
. (29)

Now the case p=1 has to be treated separately from the much harder
case p{1.

Lemma 7. (21) holds for p=1.

Proof. Using Lemma 6 we obtain

|
1

&1
(1&x) j (1+x)k x dx=|

1

&1
(1&x) j [(1+x)k+1&(1+x)k] dx

=2 j+k+1 1( j+1) 1(k+1)
1( j+k+2)

k& j
j+k+2

,

and

|
1

&1
(1&x) j (1+x)k (1+:(!)x) dx

=2 j+k+1 1( j+1) 1(k+1)
1( j+k+1) {1+

(k& j) :(!)
j+k+2 = .
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Hence by (22),

8$1(!)
81(!)

=:$(!) { k& j
j+k+2+(k& j) :(!)

&
!

1+:(!)!=
=:$(!)

(k& j)&( j+k+2)!
( j+k+2+(k& j) :(!))(1+:(!)!)

,

which shows that 81 has one and only one critical point !� :=(k& j)�
( j+k+2) in (!1 , !2). In view of (24) and (26) it must be a point of local
maximum. Thus, (21) holds.

In order to prove (21) when p{1 we need the following representation
for D$1(!).

Lemma 8. If ! # (!1 , !2), !{!*, then for p # (0, �)"[1] we have

D$1(!)=( p&1) :$(!)[A1(!)+A2(!)+A3(!)],

where

A1(!) :=
1

2(1&:(!))
(D0(!)&D1(!)),

A2(!) :=
1

2(1+:(!))
(D0(!)+D1(!)),

and

A3(!) :=
1

( p&1) :(!)(1&:(!))(1+:(!))
[(k& j) pD0(!)

&(( j+k) p+2) D1(!)].

Proof. Note that 0<|:(!)|<1 since ! # (!1 , !2)"[!*]. Using Lagrange
interpolation in the points &1, +1 and &1�:=&1�:(!) where !{!*, we
can write

x2=
1

2(1&:)
(1&x)(1+:x)+

1
2(1+:)

(1+x)(1+:x)

&
1

(1&:)(1+:)
(1&x2).
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Clearly, this formula also holds for !=!*, i.e., when :(!)=0. Hence

D$1(!)=( p&1) :$(!) |
1

&1
(1&x) jp (1+x)kp (1+:(!) x) p&2 x2 dx

=( p&1) :$(!)[A1(!)+A2(!)+A3(!)],

where

A1(!) :=
1

2(1&:(!)) |
1

&1
(1&x) jp (1+x)kp (1+:(!)x) p&1 (1&x) dx

=
1

2(1&:(!))
(D0(!)&D1(!)),

A2(!) :=
1

2(1+:(!)) |
1

&1
(1&x) jp (1+x)kp (1+:(!) x) p&1 (1+x) dx

=
1

2(1+:(!))
(D0(!)+D1(!)),

and

A3(!) :=&
1

( p&1) :(1&:)(1+:)

_|
1

&1
(1&x) jp+1 (1+x)kp+1 ( p&1) :(1+:x) p&2 dx

=
1

( p&1) :(1&:)(1+:) |
1

&1
(1&x) jp (1+x)kp (1+:x) p&1

_[&( jp+1)(1+x)+(kp+1)(1&x)] dx

=
1

( p&1) :(1&:)(1+:)
[(k& j) pD0(!)&(( j+k) p+2) D1(!)];

i.e., Lemma 8 holds.
If ! # [c]n, k , then we may use (27) along with (29) to conclude that if

p # (0, �)"[1], then

A1(!)
D(!)

=
1

2(1&:(!))
D0(!)&D1(!)

D(!)
=

1
2(1&:(!))

1&!
1+:(!)!

,

A2(!)
D(!)

=
1

2(1+:(!))
D0(!)+D1(!)

D(!)
=

1
2(1+:(!))

1+!
1+:(!) !

,
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A3(!)
D(!)

=
1

( p&1) :(!)(1&:(!))(1+:(!))
(k& j) p&(( j+k) p+2)!

1+:(!)!

=
1

( p&1) :(!)(1&:2(!)) {&
(1&!2) :(!) p

(1+:(!)!)2 &
2!

1+:(!)!=
=

1
( p&1)(1&:2(!))(1+:(!)!)2 {&(1&!2) p&2!2&2

!
:(!)= ,

since

(1&!2) :(!)
1+!:(!)

=( j+k) !&(k& j).

Hence by Lemma 8,

D$1(!)
D(!)

=( p&1) :$(!) { 1&!
2(1&:(!))(1+:(!)!)

+
1+!

2(1+:(!))(1+:(!)!)
&

(1&!2) p+2!2+2!�:(!)
( p&1)(1&:2(!))(1+:(!)!)2= . (30)

It is clear that D$(!)= p:$(!) D1(!) and so if ! # [c]n, k , then by (27),

D1(!) D$(!)
(D(!))2 = p:$(!) \D1(!)

D(!) +
2

= p:$(!)
!2

(1+:(!)!)2 . (31)

Using (30) and (31) in (28) we conclude that if ! # [c]n, k , then for all
p # (0, �)"[1] we have

8"p(!)
8p(!)

= p:$(!) {:$(!) \ ( p&1)(1&!)
2(1&:)(1+:!)

+
( p&1)(1+!)

2(1+:)(1+:!)
&

(1&!2) p+2!2+2!�:
(1&:)(1+:)(1+:!)2

&p
!2

(1+:!)2+
!2

(1+:!)2+&
1

(1+:!)2=
=

p:$(!)
(1&:2)(1+:!)2 {&:$(!)(1+!2)&2!

:$(!)
:(!)

&(1&:2)= .

Since

1
:(!)

=
1+(k& j)!&(1+ j+k) !2

( j+k)!&(k& j)
=

1&!2

( j+k) !&(k& j)
&!,
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we conclude that

8"p(!)
8p(!)

=&
p(:$(!))2

(1&:2)(1+:!)2

_{(1&!2) \1+
2!

( j+k)!&(k& j)++
1&:2

:$(!) = (32)

From (12) we deduce that

1&:(!)=(1+!)
1+k& j&(1+ j+k)!

1+(k& j) !&(1+ j+k) !2 ,

1+:(!)=(1&!)
1&k+ j+(1+ j+k)!

1+(k& j)!&(1+ j+k) !2 ,

and

:$(!)=
(1+ j+k)( j+k) !2&2(1+ j+k)(k& j)!+(k& j)2+ j+k

[1&(k& j)!&(1+ j+k) !2]2 .

Hence by Lemma 5,

_j, k(!) :=(1+ j+k)( j+k) !2&2(1+ j+k)(k& j)!+(k& j)2+ j+k>0,

and for ! # [c]n, k we have

8"p(!)
8p(!)

=&
p(1&!)2 (:$(!))2

(1&:2)(1+:!)2 {(2+ j+k)!&(k& j)
( j+k)!&(k& j)

+
1&(k& j)2+2(k& j)(1+ j+k)!&(1+ j+k)2 !2

_j, k(!) =
=&

p(1&!2)(:$(!))2

[(1&:)(1+:)(1+:!)2][( j+k)!&(k& j)]
?3(!)

_j, k(!)
, (33)

where

?3(!) :=( j+k)( j+k+1) !3&3(k& j)( j+k+1) !2

+[3( j+k)( j+k+1)&8jk]!&(k& j)( j+k+1).

Note that ?"3(!)=6( j+k+1)( j+k)(!&!*) is negative for !<!* and
positive for !>!*; i.e., ?$3(!) is strictly decreasing on [!1 , !*) and strictly
increasing on (!*, !2]. Since ?$3(!*)=(4 jk�( j+k))( j+k+3)>0 it follows
that ?$3(!)>0 for all ! in [!1 , !2]. So ?3 can have at most one zero in
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[!1 , !2]. In fact, it does have one zero in (!1 , !*). This is seen as follows.
The quantity ( j+k)!&(k& j) is negative for !<!* and tends to zero as
! � !*&. Hence, from (32) and (33) we conclude that ?3(!) is positive in
(!*&$, !*) for all small $>0. The same formulae can be similarly used
to conclude that ?3(!) is negative in (!1 , !1+$) for all small positive $.
Alternatively, using ``Mathematica'' (Wolfram Research, Inc.) or by patient
calculation we can check that ( j+k)2 ?3(!*)=8jk(k& j)>0 for k> j,
whereas ( j+k+1)2 ?3(!1)=&8k( j+1)2<0. Hence, ?3 must have a zero
in (!1 , !*) for k> j.

Let now k> j. If !3 denotes the only zero of ?3 in (!1 , !*) then ?3 is
negative on [!1 , !3) and positive on (!3 , !*]. From (32) and (33) we see
that at any zero of 8$p which lies in (!1 , !*), the sign of 8"p(!) is the same
as the sign of ?3(!). Thus, 8"p(!) is negative at each ! belonging to
[c]n, k & (!1 , !3) and positive at any ! that belongs to [c]n, k & (!3 , !*).
From (24) and (25) it follows that 8p has at least one critical point in
(!1 , !*) if j<k. If such a point lies in (!1 , !3), then it must be a point of
local maximum for 8p . Since each point in [c]n, k & (!1 , !3) can only be a
point of local maximum there can be at most one critical point of 8p in
(!1 , !3). Indeed, two local maxima are separated by a local minimum. If 8p

has a critical point !$ which lies in (!3 , !*) then it must be a point of local
minimum for 8p . Hence 8$p(!) should be positive in (!$, !$+$$) for some
$$>0. In view of (25), 8$p(!) must have at least one zero in (!$, !*), too,
which can only be a point of local minimum, since 8"p(!)>0 at all the
points in [c]n, k & (!3 , !*). But, then there must be a point of local maxi-
mum between the two local minima, which is a contradiction. So, 8p does
not really have a critical point in (!3 , !*). From (32) it follows that
8"p(!)<0 for all ! in [c]n, k & (!*, !2). So, any critical point of 8p in
(!*, !2) must be a local maximum. But if such a point !" existed, 8$p(!)
would be positive in (!"&$", !") for some $">0. In view of (25), there
would then be a zero of 8$p in (!*, !") if j<k. This zero of 8$p would again
be a point of local maximum and we are led to a contradiction. So, 8p has
no critical point in [!*, !2] if j<k. As it has been pointed out earlier, 8$p
must, because of (24) and (26), vanish at least once in (!1 , !2). The above
argument shows that it cannot do so in (!3 , !2) if j<k; but it may vanish
in (!1 , !3), though not more than once since a zero of 8$p in this interval
is necessarily a point of local maximum for 8p . Summarizing the above
discussion we have noted that

(i) 8$p has at least one zero in (!1 , !3];

(ii) 8$p has at most one zero in (!1 , !3);

(iii) all the zeros of 8$p in (!1 , !3) are simple, i.e., 8"p{0 if 8$p=0;
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(iv) 8$p has no zero in (!3 , !2);

(v) 8$p(!1+)>0, 8$p(!2&)<0 and if k> j, then 8$p(!*)<0.

Now let us suppose that 8$p has a zero in (!1 , !3), call it !� . From (22)
and the definition of 8p given in Remark 4 it can be concluded with the
help of a known result [4, Sect. 5.51] that 8$p is an analytic function of (the
complex variable !) in a small neighbourhood of the point !3 . This implies
that 8$p can only have a zero of finite multiplicity at !3 . From (v) and (iii)
it follows that 8$p(!)>0 for !1<!<!� and 8$p(!)<0 for !� <!<!3 . Since
8$p(!*)<0, (iv) implies that !3 , if it is a zero of 8$p , must be of even multi-
plicity, so that 8$p(!)<0 for !3<!�!2 . The conclusion is that, in this
case, the function 8p(!) is strictly increasing on (!1 , !� ) and strictly decreas-
ing on (!� , !2); i.e., (21) holds.

The other possibility is that 8$p has no zero in (!1 , !3).Then it must have
a zero at !3 . Since 8$p(!*)<0 it follows from (iv) that the zero of 8$p at !3

must be of odd multiplicity. So, in this case 8$p(!) is strictly increasing on
(!1 , !3) and strictly decreasing on (!3 , !2); i.e., (21) holds again.

If j=k, then !1=&!2 and !*=0. According to (25), 8$p(0)=0. Further-
more, in this case, formulae (32) and (33) reduce to

8"p(!)
8p(!)

=&
p(:$(!))2

(1&:2)(1+:!)2 {(1&!2) \k+1
k ++

1&:2

:$(!) =
and

8"p(!)
8p(!)

=&
p(1&!2)(:$(!))2 [k(2k+1) !2+k(2k+3)]

2k[k(2k+1) !2+k][(1&:)(1+:)(1+:!)2]
,

respectively. Hence, 8"p(!)<0 if ! is a critical point of 8p lying in (!1 , !2).
Taking also into account that 8p is even, no point of (!1 , 0) or of (0, !2)
can be a zero of 8$p . Since 8p must have a critical point in (!1 , !2) it (the
critical point) must lie at !=0=!* and it must be a point of local as well
as global maximum for 8p .

Next we show that for all p # (0, �),

8p(!1, n, k)>8p(!2, n, k) if k> j=n&1&k. (34)

To start with we observe that

8p(!1, n, k)
8p(!2, n, k)

=
j jp(k+1) (k+1) p

( j+1) ( j+1) pkkp

1(( j+1) p+1) 1(kp+1)
1( jp+1) 1((k+1) p+1)

=
.p( j)
.p(k)

,
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where

.p(x) :=
xxp

(x+1) (x+1) p

1((x+1) p+1)
1(xp+1)

.

So, (34) follows from the following lemma.

Lemma 9. For all p>0, the function .p is a strictly decreasing function
of x on [1, �).

Proof. Clearly,

1
p

.$p(x)

.p(x)
=

1 $((x+1) p+1)
1((x+1) p+1)

&
1 $(xp+1)
1(xp+1)

&log \1+
1
x+ .

According to a known formula [4, p. 228, Example 10],

1 $(z)
1(z)

=&
1
z

&#+ :
�

&=1
\1

&
&

1
z+&+ ,

where # is the Euler's constant. Hence

1
p

.$p(x)

.p(x)
=

1
xp+1

&
1

(x+1) p+1
+ :

�

&=1
{1

&
&

1
(x+1) p+&+1=

& :
�

&=1 {
1
&

&
1

xp+&+1=&log \1+
1
x+

= :
�

&=1
{ 1

xp+&
&

1
(x+1) p+&=&log \1+

1
x+ ,

since 1�&&1�((x+1) p+&+1)=O(&&2) as & � �.
Now we note that 1�(xp+t)&1�((x+1) p+t) is a positive decreasing

function of t and hence for all & # N,

1
xp+&

&
1

(x+1) p+&
<|

&

&&1 {
1

xp+t
&

1
(x+1) p+t= dt.
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Thus

1
p

.$p(x)

.p(x)
<|

�

0 { 1
xp+t

&
1

(x+1) p+t= dt&log \1+
1
x+

= lim
T � � |

T

0 { 1
xp+t

&
1

(x+1) p+t= dt&log \1+
1
x+

= lim
T � �

log \ xp+T
(x+1) p+T+=0.

Lemma 9 is proved and so is (34).

The final step. We have shown that if k�(n&1)�2 and 0< p<�, then

min
!1, n, k�!�!2, n, k

8p(!)=8p(!2, n, k).

Since !2, n, k=!1, n, k+1 it follows that if k> j=n&1&k, then

min
! # In, k+1

8p(!)< min
! # In, k

8p(!)

and so for 1�+�[n�2] and p>0,

min
&1+(2+�n)�!�1&(2+�n)

8p(!)=8p \1&
2+
n +

=\ nn

++(n&+)n&++ p 2
1(+p+1) 1((n&+) p+1)

1( pn+2)
.

In particular,

min
&1+2�n�!�1&2�n

8p(!)=8p \1&
2
n+

=\ nn

2n(n&1)n&1+
p

|
1

&1
(1&x) p (1+x) (n&1) p dx

=\ nn

(n&1)n&1+
p

2
1( p+1) 1((n&1) p+1)

1( pn+2)
.

As indicated earlier, Mn, +, p, !=(2&1 8p(!))1�p and so recalling that

Mn, +, p, = inf
&1+2+�n�!�1&2+�n

Mn, +, p, !

we obtain Theorem 1 for all p>0 and +�1.
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2.3. The Case p=0 and +�1 of Theorem 1

Now let p=0. From the case 0< p<�, which has already been settled,
it follows that if f # Pn, + , then

& f &0 :=exp \1
2 |

1

&1
log | f (x)| dx+�

nn

en+ +(n&+)n&+ & f &� ,

wherein equality holds for all polynomials of the form c(1+x)n&+ (1&x)+

and c(1+x)+ (1&x)n&+. However, having proved it by a limiting process
we cannot claim that the inequality is strict for all other polynomials
belonging to Pn, + . But this is true and can be seen as follows.

For ! # In, k , let

|0, k(!) :=|
1

&1
log } (1&x) j (1+x)k (1+:(!)x)

(1&!) j (1+!)k (1+:(!)!) } dx,

where j=n&1&k and :(!) is as in (12). The information given in
Remark 5 shows that

Mn, +, 0, !=exp( 1
2 |0, k(!)), (! # In, k).

Using the formula for :(!) given in (12) we see that for ! # (!1, n, k , !2, n, k)
we have

|$0, k(!)=:$(!) {|
1

&1

x
1+:(!)x

dx&
2!

1+:(!)!= .

Simple calculations show that

|$0, k(!) � +� as ! � !1+,

whereas

|$0, k(!) � &� as ! � !2&.

Furthermore, if !*=!*n, k is as in (20), then

|$0, k(!*)<0 if j<k, |$0, k(!*)=0 if j=k.

We leave it to the reader to verify that if ! is a critical point of |0, k in
(!1 , !2), i.e., if

|
1

&1

x
1+:(!)x

dx=
2!

1+:(!)!
,
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then

|"0, k(!)=
2:$(!)

(1&:2)(1+:(!)!)2

_{&:$(!)(1+!2)&2!
:$(!)
:(!)

&(1&:2(!))=
(35)

=&
2(:$(!))2

(1&:2)(1+:(!)!)2

_{(1&!2) \1+
2!

( j+k)!&(k& j)++
(1&:)(1+:)

:$(!) = .

Compare this with (32). Imitating that part of the proof of Theorem 1 (in
the case p>0), which follows formula (32), we arrive at the conclusion that
for 1�+�[n�2]

Mn, +, 0=Mn, +, 0, !

if and only if !=\(1&(2+�n)). Now, some fairly simple calculations lead
us to the proof of Theorem 1 in the remaining case p=0.

2.4. The Case +=0 of Theorem 1

Now we consider the case +=0. From Remark 5 it follows that

Mn, 0, p=min[ inf
0�!�1&2�n

Mn, 1, p, ! , inf
1&2�n�!<1

Mn, 0, p, ! , Mn, 0, p, 1].

Let us determine min[inf1&2�n�!<1 Mn, 0, p, ! , Mn, 0, p, 1]. In view of
Remark 5, we have

inf
1&2�n�!<1

Mn, 0, p, != inf
1&2�n�!<1

&Pn, n&1, !& p= min
1&2�n�!�1

&Pn, n&1, !& p.

First let 0< p<� and extend the definition of 8p(!) to values of ! in
(1&2�n, 1]. Note that k=n&1. Thus, for all ! in [1&2�n, 1] and all
p>0,

8p(!) :=2 &Pn, n&1, ! & p
p

=2 |
1

&1 }
(1+x)n&1 (1+:(!)x)
(1+!)n&1 (1+:(!)!) }

p

dx \:(!) :=&
n&1
n!+1+ .
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The formula (22) for 8$p(!)�8p(!) remains valid. It shows that

8$p \1&
2
n

++=
n

2(n&1)
>0

and so 8$p(!) increases with ! in the immediate neighbourhood of 1&2�n.
As in the proof of the case +�1, we see that 81 has one and only one

critical point in (1&2�n, 1), which lies at (n&1)�(n+1). So,

inf
1&2�n�!�1

81(!)=min {81 \1&
2
n+ , 81(1)= .

Let p # (0, �)"1 and let [c]n, n&1 denote the critical points of 8p in
(1&2�n, 1). Formula (32) which gives the value of 8"p(!)�8p(!) at each
point ! # [c]n, n&1 remains valid and gives

8"p(!)
8p(!)

=&
p(:$(!))2

(1&:2(!))(1+:(!) !)2

1&!2

n&1
;

i.e., 8"p(!) is negative at all the critical points of 8p which lie in (1&2�n, 1).
This means that any local extremum of 8p in (1&2�n, 1) can only be a
local maximum. Hence,

inf
1&2�n�!�1

8p(!)=min {8p \1&
2
n+ , 8p(1)=

for all p # (0, �); i.e.,

inf
1&2�n�!<1

Mn, 0, p, !=min {\1
2

8p \1&
2
n++

1�p

, \1
2

8p(1)+
1�p

= .

As shown earlier (see the discussion following Remark 4), (2&18p(1))1�p>
&P*n, n&1, 1&p ; so

min[ inf
1&2�n�!<1

Mn, 0, p, ! , Mn, 0, p, 1] p=min {1
2

8p \1&
2
n+ , &P*n, n&1, 1& p

p=
=min[&qn, n&1, V& p

p , &P*n, n&1, 1& p
p].

It follows from Lemma 6 that

&qn, n&1, V & p
p

&P*n, n&1, 1& p
p

=
nnp

(n&1) (n&1) p

1((n&1) p+1) 1( p+1)
1(np+1)

,
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which, we claim, is larger than 1. This is because

1(xp+1)
1((x&1) p+1)

(x&1)(x&1) p

xxp <1( p+1) (36)

for all x>1. Indeed, if 2(x) denotes the left-hand side of (36), then, using
the formula for 1 $(z)�1(z) mentioned earlier, we get

1
p

2$(x)
2(x)

=
1 $(xp+1)
1(xp+1)

&
1 $((x&1) p+1)
1((x&1) p+1)

+log
x&1

x

= :
�

&=1 {
1

(x&1) p+&
&

1
xp+&=+log

x&1
x

<|
�

0 { 1
(x&1) p+t

&
1

xp+t= dt+log
x&1

x
,

since [1�((x&1) p+t)&1�(xp+t)] is a positive decreasing function of t.
Thus,

1
p

2$(x)
2(x)

< lim
T � � |

T

0 { 1
(x&1) p+t

&
1

xp+t= dt+log
x&1

x
=0,

which proves (24). Hence,

min[ inf
1&2�n�!<1

Mn, 0, p, ! , Mn, 0, p, 1]=\1
2 |

1

&1 \
1+x

2 +
np

dx+
1�p

.

In the course of the above argument we have also shown that

inf
0�!�1&2�n

Mn, 1, p, !>min[ inf
1&2�n�!<1

Mn, 0, p, ! , Mn, 0, p, 1];

so

Mn, 0, p=\1
2 |

1

&1 \
1+x

2 +
np

dx+
1�p

(0< p<�).

Equivalently, for each f # Pn, 0 #Pn ,

& f &��(np+1)1�p & f &p , (37)

where we have an equality only for constant multiples of qn, 0 or of qn, n .
This proves Theorem 1 in the case +=0 and p>0.
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Letting p tend to zero in (37) we conclude that for all f # Pn, 0 , we have

& f &��en & f &0 ,

wherein equality holds for polynomials of the form c(1+x)n and c(1&x)n.
For other polynomials in Pn, 0 #Pn , the inequality is strict; that can be
proved the way we identified the extremal polynomials in the case p=0
and +�1. Little new is involved; we leave the details to the reader.

3. PROOF OF COROLLARY 1

Let f be a polynomial of degree at most n having no zero in the open
unit disk. Suppose in addition, that f has zeros of multiplicity at least + at
&1 and 1 where 0�+�[n�2]. Then F(z) := f (z) f (z� ) is a polynomial of
degree at most 2n with real coefficients and having no zeros in the open
unit disk. Besides, F has zeros of multiplicity at least 2+ at &1 and 1.
Hence, by Theorem 1,

&F&p�2>&q2n, 2+, V&p�2 &F&� , 0� p<�, (39)

unless F is a constant multiple of q2n, 2+ or q2n, 2n&2+ . However, F can be a
constant multiple of q2n, 2+ or q2n, 2n&2+ only if f is a constant (possibly non-
real) multiple of qn, + or of qn, n&+ . From this, Corollary 1 follows since

&F&p�2=& f &2
p , &q2n, 2+, 0&p�2=&qn, +, 0&2

p , and &F&�=& f &2
� .

4. PROOF OF COROLLARY 2

According to Theorem 1, if f or & f belongs to Pn, 1 , then

& f &��
(n&1)n&1

nn \ 1( pn+2)
1( pn& p+1) 1( p+1)+

1�p

& f &p ,

where equality holds only for constant multiples of qn, 1 or of qn, n&1 .
Corollary 2 follows by combining this result with another result accord-

ing to which if f or & f belongs to Pn, 0 , then [3, p. 205, Corollary 1] (also
see [9])

& f $&��
1
2

nn

(n&1)n&1 & f &� ,

with equality only for constant multiples of qn, 1 or of qn, n&1 .
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5. FINAL REMARKS

It is not without interest that our inequalities are valid and also sharp
for all p�0. The case p # [0, 1) usually presents difficulties because & }&p

ceases to be a norm for such values of p. This point is well illustrated by
the paper [2].
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